Transient flame propagation process and flame-speed oscillation phenomenon in a carbon dust cloud

نویسنده

  • Li Qiao
چکیده

Please cite this article in press as: L. Qiao, Com A detailed numerical study was conducted to understand the transient flame propagation process and the flame-speed oscillation phenomenon in a carbon dust cloud. The modeling included the solution of a set of time-dependent conservation equations developed for the gas phase and the particle phase in a spherical coordinate. The gas-phase reactions used detailed chemistry, variable thermodynamic properties, and multicomponent transport properties. The particle-phase equations include the two-phase force interactions in the momentum equation by considering Stoke drag force and thermophoretic force resulting from the gas-phase temperature gradient. Mass and species transfer between the two phases were modeled as a result of both gas-phase and particle surface reactions. Energy transfer between the two phases, including convective, conductive, and radiative heat transfer, were included. Radiation absorption and emission by particles were both especially considered. The results show that because of the different inertia between particles and gas, a velocity slip occurs between the two phases in the region ahead of the flame front. The slip is more significant in the early flame propagation stage than in the later stage. The radiation heat losses of the hot gases and particles to the cold ambient and the radiation gain as a result of the absorption of unburned particles are both important in the present dust flame, because the characteristic time scale of the chemical reactions is longer than that of gaseous flames. Lastly, an analysis of the detailed numerical simulations shows that a slip between the gas and particle velocities is the cause of flame-speed oscillation. The slip leads to a periodic change in local particle number density in the reaction zone, which in turn changes the local fuel equivalence ratio periodically, causing the oscillation. 2011 Published by Elsevier Inc. on behalf of The Combustion Institute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed numerical simulations of flame propagation in coal-dust clouds

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...

متن کامل

Effect of Radiation Heat Loss and Ventilation on Dust Explosions in Spherical Vessels

The flame propagation through a coal dust-air mixture in a spherical vessel was studied by means of a one-dimensional, Arrhenius-type kinetics and quasi-steady model. The model includes the evaporation of the volatile matter of dust particles into a known gaseous fuel (methane) and the single-stage reaction of the gas-phase combustion. Effect of venting devices as safety idea and the radiation ...

متن کامل

بررسی تاثیر نوع اکسیدایزر بر سرعت انتشار شعله و سرعت سوزش ابر ذرات آلومینیم

  The results of an experimental study of the combustion of aluminum particles in N2/O2 gas mixtures are presented and interpreted. This research focuses on measurement of flame speed and combustion velocity in aluminum particle dust cloud combustion. The dust dispersion technique uses an annular high-speed jet which disperses dust continuously supplied via a piston-type dust feeding system. Pa...

متن کامل

Laminar Flame Speed Prediction in Lean Mixture of Aluminum Dust Clouds by Considering the Effect of Random Distribution of Particles in Two-dimension

        In the present study, the effect of random distribution of reactants and products on laminar, 2D and steady-state flame propagation in aluminium particles has been investigated. The equations are solved only for lean mixture. The flame structure is assumed to consist of a preheat zone, a reaction zone and a post flame zone. It is presumed that in the preheat zone particles are heated an...

متن کامل

An Analytical Model for Flame Propagation through Moist Lycopodium Particles with Non-unity Lewis Number

In this investigation, the structure of one-dimensional flame propagation in uniform cloud of volatile organic particles has been analyzed in which the structure of flame is divided into three zones. The first zone is preheat zone which is divided into three subzones itself. In first subzone (heating), particle cloud heated until the moisty particles reach to vapor vaporization temperature. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011